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1. Introduction

Many researchers have studied parametric vibrations in cables. Kov!acs et al. [1] pointed out
that parametric instability of a cable employed as a tension member for a cable-stayed bridge or
guy tower may occur under an axial periodic load due to the bending vibration of the tower or the
girder of the bridge. He examined the parametric vibration of a string without sag and discussed
using a vibration absorber to control the unstable vibration. Takahashi [2] calculated the
instability boundaries of the principal regions of a flat-sag cable under an axial, sinusoidally time-
varying load. Lilien and Pinto da Costa [3] developed non-dimensional analytical formulas that
can be used to calculate the threshold amplitudes and limit cycle amplitudes in the stay cable.
Perkins [4] described the modal interactions of in-plane/out-of-plane motions in the non-linear
response of elastic cables subjected to parametric/external excitations. Many researchers [5–8]
have reported on vibrations in bridge stay cables that are induced by periodic motions of the deck
and/or tower was reported. Cable loosening may be observed in the non-linear parametric
response of a cable since large amplitude vibration occurs. However, the effect of cable loosening
in handling the non-linear parametric responses has been neglected in their analyses.

The authors described a method that can explicitly evaluate cable loosening and evaluated the
effect of cable loosening on the non-linear responses of the cables [9]. Physical explanation of
cable loosening and how it appears in real application are shown in Ref. [9]. This note examines
the effect that loosening has on the non-linear parametric responses of flat cables that are
subjected to periodic time-varying horizontal displacement/horizontal force at the support. The
note also evaluates the regions of generated compressive forces and the effect of loosening on the
non-linear parametric responses of the cables.
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2. Equation of motion

A horizontal cable with a uniform cross section hanging between two points is analyzed. If the
profile is flat, so that the sag-to-span ratio is the order of 1:8 or less, the following equations of
motion for non-linear vibration of a cable (neglecting the horizontal inertia force) are obtained
[10]
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where m is the mass per unit length, H is the initial horizontal tension induced by the dead load of
the cable, DH is the additional horizontal tension, E is the Young’s modulus, A is the cross-
sectional area, LE ¼ Lf1þ 8ð f =LÞ2g is the length of the cable, L is the span of the cable, f is the
sag of the cable, g is the gravitational acceleration, w is the deflection of the cable, u is the
horizontal displacement of the cable, x is the span-wise co-ordinate, and t is the time.

If the cable is subjected to horizontal support excitation displacement uð0Þ ¼ Xt sin Ot at x ¼ 0
and is fixed at x ¼ L as shown in Fig. 1(a), Eq. (2) is rewritten as
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where Ht is the amplitude of the horizontal force due to excitation of the support, O is the circular
frequency of the support excitation and Hp is the deflection-induced additional horizontal tension.
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Fig. 1. Geometry of a cable: (a) horizontal displacement at the support ðx ¼ 0Þ; (b) horizontal force at the support

ðx ¼ 0Þ:
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In the present analysis, the horizontal support displacement uð0Þ is assumed to be smaller than
deflection w:

If a cable is subjected to the horizontal support excitation force Hð0Þ ¼ Ht sin Ot as shown in
Fig. 1(b), Eq. (4) should be Ht ¼ Ht: Therefore, Eq. (3) is valid for both the excitation
displacement and the excitation force.

By considering the effects of flexural rigidity and damping, the calculation is able to stably
handle cable loosening, as proposed in the previous paper [9]. Eq. (1) is rewritten as follows:
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where c is the damping coefficient and I is the geometrical moment of inertia.
By making Eqs. (6), (4) and (5) non-dimensional by the span of the cable L; the initial

horizontal tension H and the first natural circular frequency o0 of the string, the following
equations are obtained:
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where %w ¼ w=L is the non-dimensional displacement in the z direction, %x ¼ x=L is the
non-dimensional co-ordinate in the x direction, t ¼ o0t is the non-dimensional time,

o0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH=mÞ ðp=LÞ2

q
is the first natural circular frequency of a taut string that has no sag

[10], o1 ¼ o1=o0 is the first non-dimensional natural circular frequency of the cable, o1 is the first
natural circular frequency of the cable, h is the damping constant, o ¼ O=o0 is the non-
dimensional circular frequency of the support excitation, ht ¼ Ht=H is the non-dimensional
amplitude of the horizontal support excitation force, hp ¼ Hp=H is the non-dimensional
additional horizontal tension, Xt ¼ Xt=L is the non-dimensional amplitude of the horizontal
support excitation displacement, g ¼ f =L is the sag-to-span ratio of the cable, k2 ¼ EA=H is the
ratio of the elongation stiffness to the horizontal tension of the cable (the square of the ratio
of the longitudinal wave propagation velocity to the transversal wave propagation velocity),
d ¼ ðEI=L2Þð1=EAÞ is the ratio of flexural rigidity to elongation stiffness [9], and
l2 ¼ 64 k2g2=ð1 þ 8g2Þ is an Irvine parameter [10].

3. Numerical analysis method

Eqs. (7)–(9) are non-linear equations of the motion of a flat horizontal cable. Additional
horizontal tensions are constant at every point on a cable because the horizontal inertial force of
the cable is neglected, based on the assumption of a flat-sag cable. This means that the total non-
dimensional horizontal tension is given by ð1þ ht sin otþ hpÞ: In a non-linear vibration analysis
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that considers cable loosening, the value of the total horizontal tension is set to zero when it
becomes less than zero. That is

1 þ ht sin otþ hp ¼ 0 ð1þ ht sin otþ hpo0Þ: ð10Þ

In order to solve Eqs. (7)–(9) while evaluating Eq. (10), the numerical method should be used.
The explicit formula of the finite difference method [11] is also employed in this study. The definite
integrals in Eq. (9) are calculated using Simpson’s 1/3 formula. The time interval for the numerical
analysis should be defined so as to satisfy the stability condition of the scheme that is used.

4. Numerical method and results

4.1. Numerical conditions

In this note, the parametric excitation is the horizontal support excitation displacement Xt or
the horizontal support excitation force ht:: The circular frequency o of the parametric excitation is
assumed to be o1 or 2o1: If o ¼ o1 is used, the parametric excitation corresponds to the
parametric responses of the second unstable region, while if o ¼ 2o1 is used, it corresponds to
that of the principal unstable region.

The number of divisions of a cable is 100. In other words, Dx ¼ 0:01: In order to satisfy the
stability conditions, the time interval must be less than 2:5 	 1025: 1:0	 1025 is used here. The
parameters d and h; needed to solve the divergence problem, have the same values as the previous
paper [9], i.e., d¼ 1027 and h ¼ 0:001: For the case in which compressive forces do not appear, the
time histories produced by the finite difference method and a Galerkin method coincide very well
in terms of both the displacement and the horizontal tension of the parametric response.

4.2. Non-linear parametric responses of the second unstable region

Fig. 2 shows the non-linear parametric responses of the second unstable region ðo ¼ o1Þ when
the cable is subjected to compressive forces. Fig. 2(a) and (b) are time histories of the center point
of the cable and the total horizontal tension, respectively. The corresponding space shapes and the
maximum displacement during nonlinear vibration of the cable are shown in Fig. 2(c) and (d).
Notations a; b and c correspond to the maximum, zero, and minimum displacements at the center
point of the cable.

Fig. 3 shows the time histories and space shapes when the amplitude of parametric excitation is
twice amplitude shown in Fig. 2. The compressive forces do not increase very much from the value
shown in Fig. 2(b) although the negative displacements are obvious. This can be interpreted as
meaning that the cable maintains space shapes that do not easily generate the compressive forces
shown in Figs. 2(c)and 3(c).

Fig. 4 shows the relationship between the maximum displacement response and the amplitude
of the horizontal tension ht due to excitation of the support. The corresponding amplitude of
support excitation displacement Xt is also shown in Fig. 4. Loosening begins to appear when ht is
greater than 0.1. Loosening affects the negative maximum response, while the positive maximum
response is scarcely affected.
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Fig. 2. Time histories in the second unstable region of (a) displacement at the center point, (b) total horizontal tension,

(c) space shapes and (d) maximum displacement of a cable for g ¼ 0:026; k2 ¼ 900; ht ¼ 0:2 ( %Xt ¼ 2:24	 10�4Þ;
d ¼ 10�7 and h ¼ 0:001:
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Fig. 3. Time histories in the second unstable region of (a) displacement at the center point, (b) total horizontal tension,

(c) space shapes and (d) maximum displacement of a cable for g ¼ 0:026; k2 ¼ 900; ht ¼ 0:4 ð %Xt ¼ 4:48	 10�4Þ;
d ¼ 10�7 and h ¼ 0:001:
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The relationship between the minimal amplitude of parametric excitation ht that generates
compressive forces in the cable and the Irvine parameter l2 is shown in Fig. 5. For the reference,
the sag-to-span ratio g is shown for the cases where k2 ¼ 900 and 1600. The compressive force
appears easily in the particular magnitude of parameter l2: The amplitude of the parametric
excitation ht has the local minimum near l2 ¼ 4p2 which corresponds to the modal transition
region from the first to the second symmetric vibration (see Fig. 5). Next, it has a minimum near
l2 ¼ 16p2: This sag-to-span ratio g also corresponds to the mode transition region from the
second to the third symmetric vibration. In this way, cables with a sag-to-span ratio g
corresponding to the natural mode transition region can be easily compressed. This conclusion
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Fig. 6. Time histories in the principal unstable region of (a) displacement at the center point, (b) total horizontal

tension, (c) space shapes and (d) maximum displacement of a cable for g ¼ 0:040; k2 ¼ 900; ht ¼ 0:3 ð %Xt ¼ 3:38	 10�4Þ;
d ¼ 10�7 and h ¼ 0:001:
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Fig. 7. Time histories in the principal unstable region of (a) displacement at the center point, (b) total horizontal

tension, (c) space shapes and (d) maximum displacement of a cable for g ¼ 0:040; k2 ¼ 900; ht ¼ 0:5 ð %Xt ¼ 5:63	 10�4Þ;
d ¼ 10�7 and h ¼ 0:001:
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was also reached for the non-linear response of the cables subjected to the vertical sinusoidally
time-varying loading [9].

4.3. Non-linear parametric responses of the principal unstable region

Figs. 6 and 7 show the non-linear parametric responses of the principal unstable region ðo ¼
2o1Þ with compressive force in the cable. Fig. 8 shows the relationship between the maximum
displacement response and the amplitude of the parametric excitation ht due to excitation of the
support. Loosening begins to appear when ht is greater than 0.23. Loosening affects the negative
maximum response, while the positive maximum response is scarcely affected. The results are
similar to those obtained for the second unstable regions.
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Fig. 8. Relationship between the maximum displacement and the amplitude of the support excitation in the principal

unstable region for g ¼ 0:040 and k2 ¼ 900:
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The relationship between the minimal amplitude of parametric excitation ht that generates
compressive forces in the cable and the Irvine parameter l2 is shown in Fig. 9. Comparing Fig. 9
with Fig. 5, it can be seen that the principal unstable region of the range that is generated by
loosening is larger than the second unstable region.

5. Concluding remarks

This note examined the effect of cable loosening on the non-linear parametric vibrations of
cables subjected to periodic support excitation. The main findings were as follows:

1. Loosening appears easily in cables with a particular sag-to-span ratio. The region in the time
history of the cable in which the compressive force appears is narrow.

2. Loosening affects the negative maximum response, while the positive maximum response is
scarcely affected.

3. The principal unstable region of the range that is generated by cable loosening is larger than
the second unstable region.
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